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The article discusses the problem of the depletion of a round stratum with a gasified liquid,
in the case of the work of a round battery of boreholes with constant end-face pressures.
The nonlinear differential equations describing the filtration process are replaced by finite-
difference equations, which are solved numerically using a computer program. The condi-
tion for the convergence of the finite-difference scheme used is given. The proposed algo-
rithm is used to solve a concrete example. By making analogous calculations for different
variants of a given number of boreholes, of the end-face pressures, of the radius of the
battery, valuable information can be obtained with respect to their optimal values, the time
of the start of secondary methods of exploitation, the volume of gas dissolved in the petro-
leum, as well as the output of petroleum, which is easily calculated from the known values of
the pressure and the petroleum saturation at any given moment of time.

Articles [1-3] discuss the problem of the depletion of a stratum with a gasified liquid for the case of
the work of a gallery, as well as of a straight-line battery of boreholes. Article [4] gives a calculation of
the mean working indices in the case of the work of a round battery.

The picture of the distribution of the pressure and the petroleum saturation in a stratum in the case
of the work of a round battery of boreholes is of great theoretical and practical importance. In the present
article the problem is solved for the depletion of a round stratum with a gasified liquid, using computer
programming.

It is assumed that it is desired to exploif a round stratum of radius r, with an impermeable external
boundary. The original values of the stratum pressure and the petroleum saturation are equal to p, and
pe- On a circle of radius r,, concentric with the external boundary, there is arranged a battery, perfect
with respect to its degree of opening-up, and consisting of n equally spaced boreholes. At the moment of
time t =0 the end-face pressures of all the boreholes are instantaneously lowered to p,, and are subsequent-
ly maintained unchanged. Starting from this moment, the plane filtration of a two-phase liquid starts in the
stratum, in the direction of the boreholes. Due to the symmetrical arrangement and to the maintenance of
an unchanged pressure p;, the whole stratum is divided into n identical angular sectors, each of which feeds
a single borehole of the battery.

The boundary of a sector is impermeable and consists of two radii and a section of the external
boundary of the stratum. A borehole located inside of a sector works as a result of the energy of the gas
dissolved in the petroleum. The central angle, determining the sector, is equal to 2 7/n. From considera-
tions of symmetry, it is possible to consider only one half of a sector. This half of a sector has a central
angle equal to 7/n. We locate the origin of coordinates at the center of the original round stratum, and the
x axis is directed through the borehole. The flow of the gasified liquid inside the last sector is two-dimen-
sional, It is described by the equations

Baku. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 98-102,
March-April, 1974, Original article submitted August 30, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

224



= o o7 P2 ) o Py
3—?=mi‘m[5’(zax) (P55

F=F1+§:—F2 (1)

+
+

where p,, i, are the viscosities of the gas and the petroleum; F,, F, are the relative phase permeabilities
of the gas and the petroleum.

Within the framework of a minimal sector, the injtial and boundary conditions of the problem assume
the form
P=Dpo p=powitht =0
apjor = 0, dpjor = Owithr = 0
dp)op = 0, dpjop = 0 with g =0 (rs:nr)
ap/ol = 0, dp/3l = 0 with ¢ = n/n
p=p withr =1, (¢ =0)
dpjor = 0, dpjor = Owithr = r,

)

where ¢ is the angle formed by the radius vector of an arbitrary point of the stratum and the positive direc-
tion of the x axis; [ is the external normal of the boundary of the sector with ¢ = n/n.

It is required to find the solution of the system of nonlinear differential equations (1) with the initial
and boundary conditions (2).

We go over to polar coordinates, using the formulas
L =recosg, y =rsing

We introduce the dimensionless quantities:

Re 2 Pl gl r=t2 gy )
Then, system (1} reduces to the following:
aP 0P 1 aP F' 3P 9p oer |, 1 [9P\*  F' 3P dp
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with the corresponding dimensionless initial and boundary conditions. This system cannot be solved analyti-
cally. Therefore, we use the method of finite-difference equations. We divide the original sector into

small sector bands. Let the radius of the sector r, be divided into N equal parts with the spacing h=r,/N.

I the points of the division are numbered in reverse order, they can be calculated using the formula

v =r,—ih (i=0, 1, 2, ..., N).

We note that the replacement of the variables r and ¢ by the variables R and ¢ using substitutions
(3) maps the sector in which the solution of the system of equations is sought on an infinite sector band,
bounded by another circle of radius R =1 with a central angle ¢ =1 and by two radii of infinite length. Asa
result of this, the boundary conditions with r =0 go over into the analogous conditions with R=w. This cir-
cumstance makes it difficult to take the given boundary condition into consideration. We correct this con-
dition in the following manner. We calculate the points of division of the variable R; using the formula

Ry = ro/(r, — ih)

To avoid using the boundary condition with Ry = «, we rewrite this condition at the point Ry_;. Then, the
infinite radius 1 = R < « is replaced by the finite radius 1 < R = Ry_;. Taking the center of the stratum
as the center of a circle, we draw arcs of the circle with the radii R=R,. As a result, they are corre-
spondingly mapped on the dimensionless sector band. We note that the points of division of the dimension-
less coordinate are arranged with a variable spacing Ry, —Rj (1=0, 1, 2, ..., N—1).

We pass on to division of the region with respect to the coordinate ¢ = 7/n into M equal parts with a
spacing A¢ = m/nM. The corresponding spacing A§ =1/M. The points of division @ and 6; (=0, 1, 2, ...,
M) will be unequally spaced, and are calculated using the formulas
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We draw the straight lines ¢ = ?5 (j=0, 1, 2, ..., M). They have a corresponding mapping in the di-
mensionless region. As a result of taking combined account of the divisions with respect to both the coor-
dinates ¢ and r, we obtain small curvilinear trapezoids. Their apexes are the mesh points of a grid re-
gion obtained by the intersection of the straight lines ¢ =¢. and the arcs of circles with the radii r =r;j.

The set of all the apexes of the curvilinear trapezoids forms a grid region. The subdivision of the region
in which Eqs. (4) are given with respect to the time 7 is carried out starting from the spacing Ar. The
subsequent values of the time, determining the layers, are calculated using the formula 7 =kAT (k=0, 1,
2, ...). Substituting partial derivatives [1] into @), and making simple transformations, we obtain its finite-

difference analog for every internal point (7}, Rj, Bj)
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The mesh point at which the borehole is located has the index numbers (i=m, j=0). Among relation-
ships (5), there is none for determining the end-face petroleum saturation. We construct it starting from
the values of the pressure and the petroleum saturation at the mesh points (tgs Tms 0), (ks Ty 41 0), (B
I'm +2, 0) and substituting the expressions for the partial derivatives [1] into the second equation of (4)
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Using the expressions for the partial derivatives of the components at the mesh point (1, Ry, 0),
starting from the values of the pressures and the petroleum saturation at the mesh points (ty, Rm-y, 0),
(T Ry 0), (Tk» Rm, o) We obtain sti]l another value of the petroleum saturation px(;)okJr r Since the end

face is subjected to an effect from both right and left, the end-face petroleum saturation can be calculated
Pingicrs = (pgl)okﬂ + P%;cﬂ) /2 6)

Linearizing system (4), we can obtain the condition for the stability of the corresponding difference
scheme

. 1 h\2 09 h \2
At < min (— : <—) ]
< [4Fmax rz} P AFy ax \ T

In calculations of the spacing A7 and h in accordance with the scheme (5), it is recommended to con~
nect these conditions.

The set of values of the pressure Pjjk and the petroleum saturation Pijk for every moment of time
Tk characterizes the distribution of the pressure and the petroleum saturation over the stratum. The pro-
cess of calculating these values is bound up with the need to carry out a large number of arithmetic and
logical operations. This calculation process can only be carried out using an electronic computer.

The scheme set forth above was used to calculate an example (in a Ural-2 machine) with the following
values of the starting parameters: r,=600 m; h=100 m (N=6); At =0.36" 1072 (At=0.5 b); A9 =1/3 (Ap =
6°), or M=5, n=6, u;=0.0125 ¢P, iy =2 cP, Py=1 (py =100 atm), P, =0.6, py=1, m=3.

The empirical functions F, and F, were taken in the form
Fo=9% Fi=(1—p)"

On the basis of the numerical results obtained, curves of the change in the pressure and the petro-
leum saturation as a function of the time were plotted for different points of the stratum. They are shown
on Figs. 1 and 2. The point of the stratum with the coordinates r =300 m and ¢ =0 corresponds to the end-
face of the borehole. On Fig. 1 the curve of the end-face pressure coincides with the t axis, while the
curve of the end-face petroleum saturation on Fig. 2 corresponds to the coordinates ¢ =0, r =300 m (curve
4). It can be seen that the end-face petroleum saturation varies monotonically and has the greatest value
over the whole depletion time, compared with other points of the stratum. The change in the pressure, as
well as of the petroleum saturation, takes place monotonically at all points of the stratum.

Comparing curves 1, 2, 3, corresponding to the points (0 m, 0), (200 m, 0), and (500 m, 0) on Fig. 1
(for the petroleum saturation on Fig. 2), we find that, with increasing distance from the borehole along the
straight line ¢ =0, the pressure increases. Calculations show that, with increasing distance from the bore-
hole along the arc of a circle with its center at the origin of coordinates, the pressure also increases.
This is evidence of the fact that the change in the pressure around the borehole takes place funnel-wise;
here, the funnel does not have a round cross section. The corresponding curves of the petroleum satura-
tion around the borehole are also funnel-shaped.

At points of the external boundary of the sector, the change in the pressure and the petroleum satura-
tion takes place with a definite lag. However, the small dimensions of the sector feeding a single bore-
hole makes it possible for the effect to be felt rapidly by the whole sector. The point of the sector furthest
from the borehold (500 m, 30°) is subjected to the effect of the borehole approximately 10 days after the
battery is put into operation. The rapid effect of the borehole on the whole stratum can lead to an accele-
rated evolution of gas from the petroleum. To prevent this phenomenon, it is desirable to make analogous
calculations for each new deposit, before undertaking the solution of the problem of establishing the value
of the end-face pressure, of the number of boreholes in the battery, of determining the time of complete
depletion, etc.

The results of the calculations show that, for the given example, complete depletion of a sector (or
of the stratum) takes place with 160 days after the start-up of the battery.
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